Derivation of the Effective Dynamics for the Bose Polaron

Université de Bourgogne
Winter School: Physics and Mathematics of Bose-Einstein
Condensates

SIEGERIED SPRUCK

February 24, 2025

Jonas Lampart

Peter Pickl

Université de Bourgogne
Eberhard Karls Universität Tübingen

EBERHARD KARLS

Plan

1 Motivation: Impurity Particles in Experiments

2 System Set-Up: Bose Gas in Condensation

3 Methods: Impurity Localization

4 Main Theorem: Validity Bose Polaron Dynamics

Motivation: Impurity Particle

Quantum gas of N bosons with 1 impurity particle \rightarrow Tracer particle.

Applications of **impurity** systems in physics:

- Track local structure:
 Vortex lattice in liquid Helium.
- Probing the density distribution of a Bose gas [Schmid-Härter-Denschlag 10].

Figure 1: Rotating Helium with marked vortices by tracer particles [Varmchuk-Gordon-Packard 79].

Motivation: Impurity Particle

Quantum gas of N bosons with 1 impurity particle \rightarrow Tracer particle.

Applications of **impurity** systems in physics:

- Track local structure: Vortex lattice in liquid Helium.
- Probing the density distribution of a Bose gas [Schmid-Härter-Denschlag 10].

Bose Polaron: Quasi-particle of impurity and bosons.

Goal: Prove the existence of a Bose Polaron in our system. \rightarrow Effective dynamics.

Next Step

1 Motivation: Impurity Particles in Experiments

2 System Set-Up: Bose Gas in Condensation

Methods: Impurity Localization

4 Main Theorem: Validity Bose Polaron Dynamics

System Set-Up

- Quantum gas of N bosons, 1 impurity particle in \mathbb{R}^3 .
- Initial volume Λ , density $\rho = \frac{N}{\Lambda}$ with ρ, Λ large.
- Interactions $V,W\in \mathscr{S}(\mathbb{R}^3,\mathbb{R})$ weak, even and of range $\mathcal{O}(1)$: Mean-field scaling.
- Dynamics on $L^2(\mathbb{R}^3_x)\otimes L^2_{\operatorname{sym}}(\mathbb{R}^{3N}_y)$

$$\begin{split} i\partial_{t}\psi_{N,t} &= H_{N}\psi_{N,t} \,, \\ H_{N} &= -\sum_{i=1}^{N} \frac{\Delta_{y_{i}}}{2} - \frac{\Delta_{x}}{2m} + \frac{1}{\rho} \sum_{1 \leq i < j \leq N} V(y_{i} - y_{j}) \\ &+ \frac{1}{\sqrt{\rho}} \sum_{i=1}^{N} W(x - y_{i}) \,. \end{split}$$

x: Impurity position; y_i : Boson positions.

Bose-Einstein Condensate

Complete **Bose-Einstein condensation** if almost all bosons in same state:

$$\psi_{N,t}(y_1,\ldots,y_N) \sim \prod_{i=1}^N \varphi_t(y_i),$$

for large ρ , $\varphi_t \in L^2(\mathbb{R}^3)$ a **one-particle state**.

Bose-Einstein Condensate

Complete Bose-Einstein condensation

if almost all bosons in same state:

$$\psi_{N,t}(y_1,\ldots,y_N) \sim \prod_{i=1}^N \varphi_t(y_i),$$

for large ρ , $\varphi_t \in L^2(\mathbb{R}^3)$ a **one-particle state**.

Time evolution of **condensate** φ_t :

$$i\partial_t \varphi_t(y) = \left(-\frac{\Delta}{2} + V \star |\varphi_t|^2(y) - \underbrace{\mu_t}_{\in \mathbb{R}}\right) \varphi_t(y)$$
 (Hartree-eq), $\varphi_{t=0} = \varphi_0$.

Bose-Einstein Condensate

Complete **Bose-Einstein condensation** if almost all bosons in same state:

$$\psi_{N,t}(y_1,\ldots,y_N) \sim \prod_{i=1}^N \varphi_t(y_i),$$

for large ρ , $\varphi_t \in L^2(\mathbb{R}^3)$ a **one-particle state**.

Time evolution of **condensate** φ_t :

$$i\partial_t \varphi_t(y) = \left(-\frac{\Delta}{2} + V \star |\varphi_t|^2(y) - \underbrace{\mu_t}_{\in \mathbb{R}}\right) \varphi_t(y)$$
 (Hartree-eq), $\varphi_{t=0} = \varphi_0$.

The condensate φ_t defines a background/environment for the excitation dynamics we are actually interest in.

Excitations

We call $\zeta \in \{\varphi_t\}^\perp \subset L^2(\mathbb{R}^3) = \lim \{\varphi_t\} \oplus \{\varphi_t\}^\perp$ an **excitation** out of the condensate. These excitations can emerge and disappear. Define U_t , **isometry**, mapping into the **excitation space** $\mathcal{F}(\{\varphi_t\}^\perp)$

$$\begin{split} U_t : L^2_{\text{sym}}(\mathbb{R}^{3N}) &\to \mathcal{F}(\{\varphi_t\}^\perp) = \bigoplus_{k=0}^\infty (\{\varphi_t\}^\perp)^{\otimes_s k} \\ &\underbrace{\varphi_t \otimes_s \cdots \otimes_s \varphi_t}_{(N-k) \text{ times}} \otimes_s \underbrace{\zeta_1 \otimes_s \dots \zeta_k}_{\in (\{\varphi_t\}^\perp)^{\otimes_s k}} \overset{U_t}{\mapsto} \zeta_1 \otimes_s \dots \zeta_k \,. \end{split}$$

Excitations

We call $\zeta \in \{\varphi_t\}^\perp \subset L^2(\mathbb{R}^3) = \lim \{\varphi_t\} \oplus \{\varphi_t\}^\perp$ an **excitation** out of the condensate. These excitations can emerge and disappear. Define U_t , **isometry**, mapping into the **excitation space** $\mathcal{F}(\{\varphi_t\}^\perp)$

$$U_{t}: L^{2}_{\text{sym}}(\mathbb{R}^{3N}) \to \mathcal{F}(\{\varphi_{t}\}^{\perp}) = \bigoplus_{k=0}^{\infty} (\{\varphi_{t}\}^{\perp})^{\otimes_{s}k}$$

$$\underbrace{\varphi_{t} \otimes_{s} \cdots \otimes_{s} \varphi_{t}}_{(N-k) \text{ times}} \otimes_{s} \underbrace{\zeta_{1} \otimes_{s} \cdots \zeta_{k}}_{\in (\{\varphi_{t}\}^{\perp})^{\otimes_{s}k}} \stackrel{U_{t}}{\longmapsto} \zeta_{1} \otimes_{s} \cdots \zeta_{k}.$$

 $U_t\psi_{N,t}$: excitation part of the wave function evolved by

$$\begin{split} i\partial_t U_t \psi_{N,t} &= H^{\rm ex} U_t \psi_{N,t} \,, \\ H^{\rm ex} &= U_t H_N U_t^* + i (\partial_t U_t) U_t^* \quad \text{(Excitation Hamiltonian)} \,. \end{split}$$

Excitations

We call $\zeta \in \{\varphi_t\}^\perp \subset L^2(\mathbb{R}^3) = \lim \{\varphi_t\} \oplus \{\varphi_t\}^\perp$ an **excitation** out of the condensate. These excitations can emerge and disappear. Define U_t , **isometry**, mapping into the **excitation space** $\mathcal{F}(\{\varphi_t\}^\perp)$

$$U_{t}: L^{2}_{\operatorname{sym}}(\mathbb{R}^{3N}) \to \mathcal{F}(\{\varphi_{t}\}^{\perp}) = \bigoplus_{k=0}^{\infty} (\{\varphi_{t}\}^{\perp})^{\otimes_{s}k}$$

$$\underbrace{\varphi_{t} \otimes_{s} \cdots \otimes_{s} \varphi_{t}}_{(N-k) \text{ times}} \otimes_{s} \underbrace{\zeta_{1} \otimes_{s} \cdots \zeta_{k}}_{\in (\{\varphi_{t}\}^{\perp})^{\otimes_{s}k}} \xrightarrow{U_{t}} \zeta_{1} \otimes_{s} \cdots \zeta_{k}.$$

 $U_t\psi_{N,t}$: excitation part of the wave function evolved by

$$i\partial_t U_t \psi_{N,t} = H^{\rm ex} U_t \psi_{N,t} \,,$$

$$H^{\rm ex} = U_t H_N U_t^* + i(\partial_t U_t) U_t^* \quad \hbox{(Excitation Hamiltonian)} \,.$$

Our setting: System exhibits Bose-Einstein condensation with few excitations.

Bose Polaron

Bose Polaron: Quasi-particle of impurity and bosons. It is described by effective dynamics generated by **Bogoliubov-Fröhlich** Hamiltonian H^{BF}

$$H^{\mathsf{BF}} = H^{\mathsf{Bog}} - \frac{\Delta_{\mathsf{x}}}{2m} + \mathsf{a}(Q_t W_{\mathsf{x}} \varphi_t) + \mathsf{a}^*(Q_t W_{\mathsf{x}} \varphi_t),$$

 $i \partial_t \psi_t^{\mathsf{BF}} = H^{\mathsf{BF}} \psi_t^{\mathsf{BF}},$
on $L^2(\mathbb{R}^3_{\mathsf{x}}) \otimes \mathcal{F}(\{\varphi_t\}^{\perp}).$

 $H^{\mathrm{Bog}} \sim d\Gamma(\xi)$ Bogoliubov Hamiltonian, modelling free excitations. Q_t projects into $\{\varphi_t\}^{\perp}$. $a^{\#}(Q_tW_x\varphi_t)$ creates or annihilates excitation due to interaction of impurity with condensate.

Bose Polaron

Bose Polaron: Quasi-particle of impurity and bosons. It is described by effective dynamics generated by **Bogoliubov-Fröhlich** Hamiltonian H^{BF}

$$H^{\mathsf{BF}} = H^{\mathsf{Bog}} - \frac{\Delta_{\mathsf{x}}}{2m} + \mathsf{a}(Q_t W_{\mathsf{x}} \varphi_t) + \mathsf{a}^*(Q_t W_{\mathsf{x}} \varphi_t),$$
 $i\partial_t \psi_t^{\mathsf{BF}} = H^{\mathsf{BF}} \psi_t^{\mathsf{BF}},$ on $L^2(\mathbb{R}^3_{\mathsf{x}}) \otimes \mathcal{F}(\{\varphi_t\}^{\perp}).$

 $H^{\mathrm{Bog}} \sim d\Gamma(\xi)$ Bogoliubov Hamiltonian, modelling free excitations. Q_t projects into $\{\varphi_t\}^{\perp}$. $a^{\#}(Q_tW_x\varphi_t)$ creates or annihilates excitation due to interaction of impurity with condensate.

Bose Polaron

Bose Polaron: Quasi-particle of impurity and bosons. It is described by effective dynamics generated by **Bogoliubov-Fröhlich** Hamiltonian H^{BF}

$$H^{\mathsf{BF}} = H^{\mathsf{Bog}} - \frac{\Delta_{\mathsf{x}}}{2m} + a(Q_t W_{\mathsf{x}} \varphi_t) + a^*(Q_t W_{\mathsf{x}} \varphi_t),$$

 $i\partial_t \psi_t^{\mathsf{BF}} = H^{\mathsf{BF}} \psi_t^{\mathsf{BF}},$
on $L^2(\mathbb{R}^3_{\mathsf{x}}) \otimes \mathcal{F}(\{\varphi_t\}^{\perp}).$

Importance of the **Bogoliubov-Fröhlich** Hamiltonian H^{BF} :

- Its validity proves the **formation** of the **Bose Polaron**.
- We started with Schrödinger's equation and now consider a QFT of matter (impurity) interacting with a field of excitations.
- It **simplifies** the **dynamics**: "Free" quantum field interacting with matter.

Next Step

1 Motivation: Impurity Particles in Experiments

2 System Set-Up: Bose Gas in Condensation

3 Methods: Impurity Localization

4 Main Theorem: Validity Bose Polaron Dynamics

Methods Overview

$$\underbrace{\mathcal{H}^{\rm ex}}_{\text{Full excitation dynamics}} = \underbrace{\mathcal{H}^{\rm BF}}_{\text{Polaron dynamics}} + 1/\sqrt{\rho} \cdot \text{error} + \underbrace{\sqrt{\rho} \, W \star |\varphi_t|^2(x)}_{\text{Mean-field impurity-condensate interaction}}$$

We want to show

$$H^{\mathsf{ex}} \overset{\Lambda, \rho \to \infty}{\longrightarrow} H^{\mathsf{BF}}$$
.

- Control **excitation number** $\rightarrow (1/\sqrt{\rho} \cdot \text{error})$ small.
- Control impurity localization and φ_t remains flat around the origin $\rightarrow \sqrt{\rho}W \star |\varphi_t|^2(x) \sim \sqrt{\rho}W \star 1$.

Methods Overview

$$\underbrace{\mathcal{H}^{\rm ex}}_{\text{Full excitation dynamics}} = \underbrace{\mathcal{H}^{\rm BF}}_{\text{Polaron dynamics}} + 1/\sqrt{\rho} \cdot \text{error} + \underbrace{\sqrt{\rho} \, W \star |\varphi_t|^2(x)}_{\text{Mean-field impurity-condensate interaction}}$$

We want to show

$$H^{\mathsf{ex}} \overset{\Lambda, \rho \to \infty}{\longrightarrow} H^{\mathsf{BF}}$$
 .

- Control **excitation number** $\rightarrow (1/\sqrt{\rho} \cdot \text{error})$ small.
- Control impurity localization and φ_t remains flat around the origin $\rightarrow \sqrt{\rho}W \star |\varphi_t|^2(x) \sim \sqrt{\rho}W \star 1$.

Impurity Localization

Goal: Prove **impurity remains** in the **bulk** of the condensate:

 $\forall T \geq 0$, $M \in \mathbb{N}_0 \ \exists C_M > 0$ such that for all densities $\rho \geq 1$, volumes $\Lambda \geq 1$

$$\sup_{t \in [-T,T]} \| \underbrace{|x|^{2M}}_{\text{Impurity position Polaron dynamics}} \| \le C_M.$$

Control **impurity position** x \downarrow needs

Control **kinetic energy** ∇_x \downarrow Control energy gained by excitation

Control **number of excitations** effectively interacting with impurity

Next Step

1 Motivation: Impurity Particles in Experiments

System Set-Up: Bose Gas in Condensation

Methods: Impurity Localization

4 Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin.

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin.
- ii) Excitation number < Volume.

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin.
- ii) Excitation number < Volume.

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin:
- ii) Excitation number < Volume:
- iii) Impurity-localized around origin:

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin: $\varphi_0(0) = 1$, $D^{\beta}\varphi_0(0) = 0$ for all $|\beta| \ge 1$.
- ii) Excitation number < Volume:
- iii) Impurity-localized around origin:

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ , Λ and φ_0 flat around the origin: $\varphi_0(0) = 1$, $D^{\beta}\varphi_0(0) = 0$ for all $|\beta| \ge 1$.
- ii) Excitation number \leq Volume: $\langle \psi_0^{\mathrm{BF}}, (\mathcal{N}_+ + 1)^n \psi_0^{\mathrm{BF}} \rangle \leq C_n \Lambda^n$, $0 \leq n \leq 4$.
- iii) Impurity-localized around origin:

Theorem (Validity Bose Polaron Dynamics)

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ , Λ and φ_0 flat around the origin: $\varphi_0(0) = 1$, $D^{\beta}\varphi_0(0) = 0$ for all $|\beta| \ge 1$.
- ii) Excitation number \leq Volume: $\langle \psi_0^{\mathrm{BF}}, (\mathcal{N}_+ + 1)^n \psi_0^{\mathrm{BF}} \rangle \leq C_n \Lambda^n$, $0 \leq n \leq 4$.
- iii) Impurity-localized around origin:

$$\left\langle \psi_0^{\mathrm{BF}}, (-\Delta_{\scriptscriptstyle X} + x^2 + U_{\scriptscriptstyle \mathcal{V}}(\mathcal{N}_+ + 1)U_{\scriptscriptstyle \mathcal{V}}^*)^M \psi_0^{\mathrm{BF}} \right\rangle \leq \mathit{C}_{\mathit{M}}, \ \textit{for all} \ \mathit{M} \geq 0.$$

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

- i) Condensate is a rescaled function $\varphi_0(y) = \eta(\Lambda^{-\frac{1}{3}}y)$, η independent of ρ, Λ and φ_0 flat around the origin: $\varphi_0(0) = 1$, $D^{\beta}\varphi_0(0) = 0$ for all $|\beta| \ge 1$.
- ii) Excitation number \leq Volume: $\langle \psi_0^{\mathrm{BF}}, (\mathcal{N}_+ + 1)^n \psi_0^{\mathrm{BF}} \rangle \leq C_n \Lambda^n$, $0 \leq n \leq 4$.
- iii) Impurity-localized around origin: $\langle \psi_0^{\mathsf{BF}}, (-\Delta_x + x^2 + U_{\mathcal{V}}(\mathcal{N}_+ + 1)U_{\mathcal{V}}^*)^M \psi_0^{\mathsf{BF}} \rangle \leq C_M$, for all $M \geq 0$.

Then for $\psi_0^{\rm ex}=\psi_0^{\rm BF}$ and for all times $T\geq 0$ there exists a constant C>0 such that for all densities $\rho\geq 1$, volumes $\Lambda\geq 1$

$$\sup_{t \in [-T,T]} \|\underbrace{e^{it(\rho^{1/2} \int W - \mu_0)} \psi_t^{\mathrm{ex}}}_{\textit{Full excitation dynamics}} - \underbrace{\psi_t^{\mathrm{BF}}}_{\textit{Polaron dynamics}} \|_{\mathcal{F}} \leq C \left(\frac{\Lambda^3}{\rho}\right)^{1/2} \,.$$

Convergence to 0 for $\rho, \Lambda \to \infty$, with $\Lambda^3 \ll \rho$. We conclude effective description of the full microscopic dynamics through \mathbf{H}^{BF} .

Conclusion

- Bose Polaron: Quasi-particle of impurity and bosons.
- We proved the effective description of the full microscopic dynamics through the Polaron dynamics:

$$H^{\mathsf{BF}} = H^{\mathsf{Bog}} - \frac{\Delta_{\mathsf{x}}}{2m} + a(Q_t W_{\mathsf{x}} \varphi_t) + a^*(Q_t W_{\mathsf{x}} \varphi_t).$$

• Impurity is localized in the large Bose gas.

• (Ongoing) Derive effective limiting **dynamics** independent of Λ , ρ at **infinite volume**.

Thank you for your attention!

Literature

Derivation of the Bogoliubov-Fröhlich Hamiltonian from the microscopic dynamics:

Myśliwy-Seiringer 2020: Spectrum at low energies on the unit torus in the mean-field scaling (Interactions are often but weak).

Lampart-Pickl 2022: Dynamics on the unit torus in the mean-field scaling.

Lampart-Triay 2024: Spectrum on the unit torus in the **dilute scaling** (Interactions are rare but strong).

Literature

Derivation of the Bogoliubov-Fröhlich Hamiltonian from the microscopic dynamics:

Myśliwy-Seiringer 2020: Spectrum at low energies on the unit torus in the mean-field scaling (Interactions are often but weak).

Lampart-Pickl 2022: Dynamics on the unit torus in the mean-field scaling.

Lampart-Triay 2024: Spectrum on the unit torus in the **dilute scaling** (Interactions are rare but strong).

Our work extents the results of [Lampart-Pickl 2022] to large volumes and without periodic boundary condition leading to a non-constant condensate.

Generalized Initial State

Goal: Initial state with

- $\mathcal{O}(1)$ excitations locally (in unit volume)
- $\mathcal{O}(\Lambda)$ excitations globally (in volume Λ)

Currently: ψ_0^{BF} with $\mathcal{O}(1)$ excitations globally $\to \mathcal{O}(1)$ excitations locally.

Needed for tracer localization! $(\|(-\Delta_x + x^2 + \mathcal{N} + 1)^M \psi_0^{\mathsf{BF}}\| \leq C)$

Solution: Bogoliubov transformed initial state

$$U_{\mathcal{V}}\psi_0^{\mathsf{BF}}$$

with

$$\underbrace{\|\mathcal{V}\|_{\text{op}} \leq C}_{\mathcal{O}(1) \text{ local excitations}} \; , \quad \underbrace{\|\mathcal{V}\mathcal{V}^* - 1\|_{\textit{HS}} \leq C \cdot \Lambda}_{\mathcal{O}(\Lambda) \text{ global excitations}} \; .$$

Same estimates as before!

$$\begin{split} \|(-\Delta_x + x^2 + U_{\mathcal{V}}(\mathcal{N}+1)U_{\mathcal{V}}^*)^M \psi_t^{\mathsf{BF}}\| &\leq C \text{ if } \psi_{t=0}^{\mathsf{BF}} = U_{\mathcal{V}} \psi_0^{\mathsf{BF}}, \\ \|(-\Delta_x + x^2 + U_{\mathcal{V}}(\mathcal{N}+1)U_{\mathcal{V}}^*)^M U_{\mathcal{V}} \psi_0^{\mathsf{BF}}\| &\leq C. \end{split}$$

Scaling

Density $\rho \geq 1$ and $\Lambda = \rho^{\alpha}$, the gas is for all $\alpha > 0$ dense!

- The case $\alpha=0$ is the standard mean-field scaling with fixed volume (e.g., $\Lambda=1$).
- The case $\alpha=\infty$ corresponds to the thermodynamic limit with constant density (e.g. $\rho=1$) as the volume grows.
- Our approximation is valid for $0 < \alpha < 1/3$.

Comparison with the β -scaling:

$$-\sum_{i} \frac{\Delta_{y_i}}{N^{2\beta}} + N^{3\beta-1} \sum_{i,j} V(N^{\beta}(y_i - y_j)), \quad y_i \in [-1/2, 1/2].$$

• $\beta := \frac{\alpha}{3(1+\alpha)}$, $0 < \beta < 1/4$.