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Motivation: Impurity Particle

Quantum gas of N bosons with 1 impurity particle → Tracer particle.

Applications of impurity systems in

physics:

� Track local structure:

Vortex lattice in liquid Helium.

� Probing the density distribution

of a Bose gas [Schmid-Härter-

Denschlag 10].
Figure 1: Rotating Helium with marked

vortices by tracer particles

[Varmchuk-Gordon-Packard 79].

Bose Polaron: Quasi-particle of impurity and bosons.

Goal: Prove the existence of a Bose Polaron in our system.

→ Effective dynamics.
1 / 9
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Next Step

1 Motivation: Impurity Particles in Experiments

2 System Set-Up: Bose Gas in Condensation

3 Methods: Impurity Localization

4 Main Theorem: Validity Bose Polaron Dynamics
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System Set-Up

� Quantum gas of N bosons, 1 impurity particle in R3.

� Initial volume Λ, density ρ = N
Λ with ρ,Λ large.

� Interactions V ,W ∈ S (R3,R) weak, even and of range O(1):

Mean-field scaling.

� Dynamics on L2(R3
x)⊗ L2sym(R

3N
y )

i∂tψN,t =HNψN,t ,

HN =−
N∑
i=1

∆yi

2
−

∆x

2m
+

1

ρ

∑
1≤i<j≤N

V (yi − yj )

+
1

√
ρ

N∑
i=1

W (x − yi ) .

x : Impurity position; yi : Boson positions.
BEC ImpurityExcitation
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Bose-Einstein Condensate

Complete Bose-Einstein condensation

if almost all bosons in same state:

ψN,t(y1, . . . , yN) ∼
N∏
i=1

φt(yi ) ,

for large ρ, φt ∈ L2(R3) a one-particle state.

BEC ImpurityExcitation

Time evolution of condensate φt :

i∂tφt(y) =
(
− ∆

2
+ V ⋆ |φt |2(y)− µt︸︷︷︸

∈R

)
φt(y) (Hartree-eq) ,

φt=0 = φ0 .

The condensate φt defines a background/environment for the excitation

dynamics we are actually interest in.
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Excitations

We call ζ ∈ {φt}⊥ ⊂ L2(R3) = lin{φt} ⊕ {φt}⊥ an excitation out of the

condensate. These excitations can emerge and disappear. Define Ut , isometry,

mapping into the excitation space F({φt}⊥)

Ut : L
2
sym(R

3N) → F({φt}⊥) =
∞⊕
k=0

({φt}⊥)⊗sk

φt ⊗s · · · ⊗s φt︸ ︷︷ ︸
(N−k) times

⊗s ζ1 ⊗s . . . ζk︸ ︷︷ ︸
∈({φt}⊥)⊗s k

Ut7−→ ζ1 ⊗s . . . ζk .

UtψN,t : excitation part of the wave function evolved by

i∂tUtψN,t = HexUtψN,t ,

Hex = UtHNU
∗
t + i(∂tUt)U

∗
t (Excitation Hamiltonian) .

Our setting: System exhibits Bose-Einstein condensation with few excitations.
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Bose Polaron

Bose Polaron: Quasi-particle of impurity and bosons.

It is described by effective dynamics generated by
Bogoliubov-Fröhlich Hamiltonian HBF

HBF = HBog −
∆x

2m
+ a(QtWxφt) + a∗(QtWxφt) ,

i∂tψ
BF
t = HBFψBF

t ,

on L2(R3
x)⊗F({φt}⊥). BEC ImpurityExcitation

HBog ∼ dΓ(ξ) Bogoliubov Hamiltonian, modelling free excitations. Qt projects

into {φt}⊥. a#(QtWxφt) creates or annihilates excitation due to interaction

of impurity with condensate.

Impurity

Condensate

Excitation
creat

ion
annihilation
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2m
+ a(QtWxφt) + a∗(QtWxφt) ,

i∂tψ
BF
t = HBFψBF

t ,

on L2(R3
x)⊗F({φt}⊥). BEC ImpurityExcitation

Importance of the Bogoliubov-Fröhlich Hamiltonian HBF:

� Its validity proves the formation of the Bose Polaron.

� We started with Schrödinger’s equation and now consider a QFT of matter

(impurity) interacting with a field of excitations.

� It simplifies the dynamics: “Free” quantum field interacting with matter.
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Methods Overview

Hex︸︷︷︸
Full excitation dynamics

= HBF︸︷︷︸
Polaron dynamics

+1/
√
ρ · error+ √

ρW ⋆ |φt |2(x)︸ ︷︷ ︸
Mean-field impurity-condensate interaction

.

We want to show

Hex Λ,ρ→∞−→ HBF .

� Control excitation number

→
(
1/
√
ρ · error

)
small.

� Control impurity localization and

φt remains flat around the origin

→ √
ρW ⋆ |φt |2(x) ∼

√
ρW ⋆ 1.

Impurity
Condensate

Initial conditions
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Impurity Localization

Goal: Prove impurity remains in the bulk of the

condensate:

∀T ≥ 0, M ∈ N0 ∃CM > 0 such that for all densities

ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ |x |2M︸ ︷︷ ︸
Impurity position

· ψBF
t︸︷︷︸

Polaron dynamics

∥ ≤ CM .

Impurity
Condensate

Initial conditions

Control impurity position x

needs ↓ needs

Control kinetic energy ∇x

↓
Control energy gained by excitation

↓
Control number of excitations effectively interacting with impurity

BEC ImpurityExcitation
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Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:
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3 y), η independent of

ρ,Λ and φ0 flat around the origin.φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume.

Impurity
Condensate

Then for ψex
0 = ψBF

0 and for all stopping times T ≥ 0 there exists a constant

C > 0 such that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.
8 / 9



D
ra
ft

Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function φ0(y) = η(Λ− 1
3 y), η independent of

ρ,Λ and φ0 flat around the origin:

φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume:

〈
ψBF
0 , (N+ + 1)nψBF

0

〉
≤ CnΛ

n, 0 ≤ n ≤ 4.

iii) Impurity-localized around origin:

〈
ψBF
0 , (−∆x + x2 + UV(N+ + 1)U∗

V)
MψBF

0

〉
≤ CM , for all M ≥ 0.

Then for ψex
0 = ψBF

0 and for all times T ≥ 0 there exists a constant C > 0 such

that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.

8 / 9



D
ra
ft

Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function φ0(y) = η(Λ− 1
3 y), η independent of

ρ,Λ and φ0 flat around the origin: φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume:

〈
ψBF
0 , (N+ + 1)nψBF

0

〉
≤ CnΛ

n, 0 ≤ n ≤ 4.

iii) Impurity-localized around origin:

〈
ψBF
0 , (−∆x + x2 + UV(N+ + 1)U∗

V)
MψBF

0

〉
≤ CM , for all M ≥ 0.

Then for ψex
0 = ψBF

0 and for all times T ≥ 0 there exists a constant C > 0 such

that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.

8 / 9



D
ra
ft

Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function φ0(y) = η(Λ− 1
3 y), η independent of

ρ,Λ and φ0 flat around the origin: φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume:
〈
ψBF
0 , (N+ + 1)nψBF

0

〉
≤ CnΛ

n, 0 ≤ n ≤ 4.

iii) Impurity-localized around origin:

〈
ψBF
0 , (−∆x + x2 + UV(N+ + 1)U∗

V)
MψBF

0

〉
≤ CM , for all M ≥ 0.

Then for ψex
0 = ψBF

0 and for all times T ≥ 0 there exists a constant C > 0 such

that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.

8 / 9



D
ra
ft

Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function φ0(y) = η(Λ− 1
3 y), η independent of

ρ,Λ and φ0 flat around the origin: φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume:
〈
ψBF
0 , (N+ + 1)nψBF

0

〉
≤ CnΛ

n, 0 ≤ n ≤ 4.

iii) Impurity-localized around origin:〈
ψBF
0 , (−∆x + x2 + UV(N+ + 1)U∗

V)
MψBF

0

〉
≤ CM , for all M ≥ 0.

Then for ψex
0 = ψBF

0 and for all times T ≥ 0 there exists a constant C > 0 such

that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.

8 / 9



D
ra
ft

Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:

i) Condensate is a rescaled function φ0(y) = η(Λ− 1
3 y), η independent of

ρ,Λ and φ0 flat around the origin: φ0(0) = 1, Dβφ0(0) = 0 for all |β| ≥ 1.

ii) Excitation number≤Volume:
〈
ψBF
0 , (N+ + 1)nψBF

0

〉
≤ CnΛ

n, 0 ≤ n ≤ 4.

iii) Impurity-localized around origin:〈
ψBF
0 , (−∆x + x2 + UV(N+ + 1)U∗

V)
MψBF

0

〉
≤ CM , for all M ≥ 0.

Then for ψex
0 = ψBF

0 and for all times T ≥ 0 there exists a constant C > 0 such

that for all densities ρ ≥ 1, volumes Λ ≥ 1

sup
t∈[−T ,T ]

∥ e it(ρ
1/2

∫
W−µ0)ψex

t︸ ︷︷ ︸
Full excitation dynamics

− ψBF
t︸︷︷︸

Polaron dynamics

∥F ≤ C
(

Λ3

ρ

)1/2

.

Convergence to 0 for ρ,Λ → ∞, with Λ3 ≪ ρ. We conclude effective

description of the full microscopic dynamics through HBF.
8 / 9



D
ra
ft

Conclusion

� Bose Polaron: Quasi-particle of impurity and bosons.

� We proved the effective description of the full microscopic dynamics

through the Polaron dynamics:

HBF = HBog − ∆x

2m + a(QtWxφt) + a∗(QtWxφt).

� Impurity is localized in the large Bose gas.

� (Ongoing) Derive effective limiting dynamics independent of Λ, ρ at

infinite volume.

9 / 9
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Thank you for your attention!
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Literature

Derivation of the Bogoliubov-Fröhlich Hamiltonian from the microscopic

dynamics:

Myśliwy-Seiringer 2020: Spectrum at low energies on the unit torus in the

mean-field scaling (Interactions are often but weak).

Lampart-Pickl 2022: Dynamics on the unit torus in the mean-field scaling.

Lampart-Triay 2024: Spectrum on the unit torus in the dilute scaling

(Interactions are rare but strong).

Our work extents the results of [Lampart-Pickl 2022] to large volumes and

without periodic boundary condition leading to a non-constant condensate.
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Generalized Initial State

Goal: Initial state with

� O(1) excitations locally (in unit volume)

� O(Λ) excitations globally (in volume Λ)

Currently: ψBF
0 with O(1) excitations globally → O(1) excitations locally.

Needed for tracer localization! (∥(−∆x + x2 +N + 1)MψBF
0 ∥ ≤ C )

Solution: Bogoliubov transformed initial state

UVψ
BF
0

with

∥V∥op ≤ C︸ ︷︷ ︸
O(1) local excitations

, ∥VV∗ − 1∥HS ≤ C · Λ︸ ︷︷ ︸
O(Λ) global excitations

.

Same estimates as before!

∥(−∆x + x2 + UV(N + 1)U∗
V)

MψBF
t ∥ ≤ C if ψBF

t=0 = UVψ
BF
0 ,

∥(−∆x + x2 + UV(N + 1)U∗
V)

MUVψ
BF
0 ∥ ≤ C .
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Scaling

Density ρ ≥ 1 and Λ = ρα, the gas is for all α > 0 dense!

� The case α = 0 is the standard mean-field scaling with fixed volume (e.g.,

Λ = 1).

� The case α = ∞ corresponds to the thermodynamic limit with constant

density (e.g. ρ = 1) as the volume grows.

� Our approximation is valid for 0 < α < 1/3.

Comparison with the β-scaling:

−
∑
i

∆yi

N2β
+ N3β−1

∑
i,j

V
(
Nβ(yi − yj)

)
, yi ∈ [−1/2, 1/2] .

� β := α
3(1+α) , 0 < β < 1/4.
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