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@ Main Theorem: Validity Bose Polaron Dynamics



Motivation: Impurity Particle

Quantum gas of N bosons with 1 impurity particle — Tracer particle.

Applications of impurity systems in
physics:
e Track local structure:
Vortex lattice in liquid Helium.

e Probing the density distribution

of a Bose gas [Schmid-Harter-
Denschlag 10].

Figure 1: Rotating Helium with marked
vortices by tracer particles
[Varmchuk-Gordon-Packard 79].
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® BEC @ Excitation ® Impurity

Bose Polaron: Quasi-particle of impurity and bosons.

Goal: Prove the existence of a Bose Polaron in our system.
— Effective dynamics.



@ System Set-Up: Bose Gas in Condensation



System Set-Up

e Quantum gas of N bosons, 1 impurity particle in R3.
e Initial volume A, density p = % with p, A large.

e Interactions V, W € .(R3 R) weak, even and of range O(1):
Mean-field scaling.

e Dynamics on [*(R3) @ L2, (R3")
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® BEC @ Excitation ® Impurity
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Bose-Einstein Condensate

Complete Bose-Einstein condensation
if almost all bosons in same state:

N
Une(yas - oyw) ~ [ [ oelv) s
i=1

for large p, p; € L?(R®) a one-particle state.
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Bose-Einstein Condensate

e o
e ® © ©
°° % ° o
Complete Bose-Einstein condensation o %o e %, o ®
if almost all bosons in same state: °% L 7= ® o
0eo® o0 8%%°%,
N 0. ofP o ol o
Une(yas - oyw) ~ [ eelni) ® o ® o2 o °
i=1 oo ° o ®o
e ®*_ % _ oo ¢
- e o 2 0%,
for large p, p: € L>(R%) a one-particle state. ® e e o ©®

® BEC @ Excitation ® Impurity

Time evolution of condensate ;:

. A
ideely) = (= 5 +V*leiP(y) = s )eely) (Hartree-eq),
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The condensate ¢, defines a background/environment for the excitation
dynamics we are actually interest in.



We call ¢ € {p:}*+ C L2(R3) = lin{w:} @ {¢:}* an excitation out of the
condensate. These excitations can emerge and disappear. Define U;, isometry,
mapping into the excitation space F({x;:}*)

Us : L2 (RY) = F({oe}) = D)
k=0
§0t®s"'®s<pt®s<1®s~"§k&C]-@S"'Ck'

(N—K) times €({pe))®sk
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Urpn i excitation part of the wave function evolved by

iat Uth,t = HexUth,ta
H® = UsHn U +i(0:U;)Uf  (Excitation Hamiltonian) .



We call ¢ € {p:}*+ C L2(R3) = lin{w:} @ {¢:}* an excitation out of the
condensate. These excitations can emerge and disappear. Define U;, isometry,
mapping into the excitation space F({x;:}*)

Ue: R = F({oe}) = Do)
k=0
(pt®s"'®s§0t®s<1®5"'§k&C]-@S"'Ck'

(N—K) times €({pe))®sk

Urpn i excitation part of the wave function evolved by

iat Uth,t = HexUth,ta
H® = UsHn U +i(0:U;)Uf  (Excitation Hamiltonian) .

Our setting: System exhibits Bose-Einstein condensation with few excitations.
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Bose Polaron
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of impurity with condensate.



Bose Polaron

e e
e © o
Bose Polaron: Quasi-particle of impurity and bosons. © e N 0®e © o
. . . 3 °® ® o ® [ ]

It is de'scrlbed by e.ffectlve Qynar'mcs gBanerated by «® o 0’._* 0,
Bogoliubov-Frohlich Hamiltonian H .° ."'. .o‘\. ) C
BF Bog  Ox . Se oo o' o ¢
H=" =H g—%'Fa(QthiPt)"Fa (Qth<Pt)7 ® : ...“_.‘ .. ) i

.o BF _ JBF. BF o ® ° ®
Iat’l[}t =H wt? ............
2/p3 1L ) e o
on L*(R}) ® F({pe}). ® BEC @ Excitation ® Impurity

HB° ~ dr(¢) Bogoliubov Hamiltonian, modelling free excitations. @; projects
into {¢:}+. a(Q:Wyy:) creates or annihilates excitation due to interaction
of impurity with condensate.

a(Q: W) a*(Q:Wayp:)
Q¢

Q: O , OQ:
Excitation L Impurity o0
W, ~= ® S Wy

Pt
Condensate




Bose Polaron
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Importance of the Bogoliubov-Frohlich Hamiltonian HBF:
e lIts validity proves the formation of the Bose Polaron.

e We started with Schrodinger’s equation and now consider a QFT of matter
(impurity) interacting with a field of excitations.

e It simplifies the dynamics: “Free” quantum field interacting with matter.
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© Methods: Impurity Localization



Methods Overview

H = HEF +1//p-error+ VPW * | [*(x)
Full excitation dynamics Polaron dynamics

Mean-field impurity-condensate interaction

We want to show

Hex A,p—o0 HBF

e Control excitation number

— (1 - error) small.
(t/ve ) ¢ole) = 1+ O(e/A)=

e Control impurity localization and B
A

Impurity
® Condensate @

¢ remains flat around the origin
— /W x [0 2(x) ~ /pW * 1. Initial conditions
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Impurity Localization

Goal: Prove impurity remains in the bulk of the

condensate:

VYT >0, M € Ng 3Cy > 0 such that for all densities -
p>1, volumes A > 1 T T
sup || |X|2M . ?F || < Cum. Initial conditions

te[—T,T]

Impurity position Polaron dynamics
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Control number of excitations effectively interacting with impurity ;
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@ Main Theorem: Validity Bose Polaron Dynamics



Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:
Condensate ¢

o(z) = 1+ O(x/A/%)>

A
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Main Theorem: Validity Bose Polaron Dynamics

Theorem (Validity Bose Polaron Dynamics)

If we have the initial conditions:
i) Condensate is a rescaled function ¢o(y) = n(A~3y), n independent of
p, \ and g flat around the origin: o(0) = 1, DPpo(0) = 0 forall |3] > 1.
ii) Excitation number<Volume: (¢§", (V| +1)"§") < C,A", 0 < n < 4.

iif) Impurity-localized around origin:
(VEF, (—Dx + x* + Up(N4 + 1) Up)MyFF) < Cy, for all M > 0.

Then for 1§ = & and for all times T > 0 there exists a constant C > 0 such
that for all densities p > 1, volumes A > 1

. 1/2
sup | e/t(p1/2fW—,uo)w<tex _ BF lF<C (AT?)
N NI

t
te[—T,T]
Full excitation dynamics  Polaron dynamics

Convergence to 0 for p, A — oo, with N> < p. We conclude effective
description of the full microscopic dynamics through HEF.



Conclusion

e Bose Polaron: Quasi-particle of impurity and bosons.

e We proved the effective description of the full microscopic dynamics
through the Polaron dynamics:
HBF = HBOg e ZAil;; —+ a(QtWX(pt) —+ a*(QtWXSDt)-

e Impurity is localized in the large Bose gas.

e (Ongoing) Derive effective limiting dynamics independent of A, p at
infinite volume.



Thank you for your attention!



Derivation of the Bogoliubov-Frohlich Hamiltonian from the microscopic
dynamics:

Mysliwy-Seiringer 2020: Spectrum at low energies on the unit torus in the
mean-field scaling (Interactions are often but weak).
Lampart-Pickl 2022: Dynamics on the unit torus in the mean-field scaling.

Lampart-Triay 2024: Spectrum on the unit torus in the dilute scaling
(Interactions are rare but strong).



Derivation of the Bogoliubov-Frohlich Hamiltonian from the microscopic

dynamics:

Mysliwy-Seiringer 2020: Spectrum at low energies on the unit torus in the
mean-field scaling (Interactions are often but weak).

Lampart-Pickl 2022: Dynamics on the unit torus in the mean-field scaling.

Lampart-Triay 2024: Spectrum on the unit torus in the dilute scaling
(Interactions are rare but strong).

Our work extents the results of [Lampart-Pickl 2022] to large volumes and
without periodic boundary condition leading to a non-constant condensate.



Generalized Initial State

Goal: Initial state with

e O(1) excitations locally (in unit volume)

e O(N) excitations globally (in volume A)

Currently: ¥EF with O(1) excitations globally — O(1) excitations locally.
Needed for tracer localization! (||(—Ax + x> + N + 1)MyEF|| < C)
Solution: Bogoliubov transformed initial state

Uyigh
with
[Vlep <€, [WVV' —1f|us < C-A.
N——
O(1) local excitations O(N) global excitations

Same estimates as before!
[(=Ax + x* + LN + ) Us)My2F|| < Cif 2y = UpygF,
[(=2x + x* + Ly(N + 1) Up)MUpsT || < C.



Density p > 1 and A = p?, the gas is for all @ > 0 dense!

e The case o = 0 is the standard mean-field scaling with fixed volume (e.g.,
A=1).

e The case a = oo corresponds to the thermodynamic limit with constant
density (e.g. p = 1) as the volume grows.

e Our approximation is valid for 0 < o < 1/3.

Comparison with the (-scaling:

A,
T + NN V(NP (yi — ), wi € [-1/2,1/2].

i

o [ = 1+a),0<ﬁ<1/4
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